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Convergent normal forms of symmetric dynamical systems
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Abstract. It is shown that the presence of Lie point symmetries of (non-Hamiltonian)
dynamical systems can ensure the convergence of the coordinate transformations which take
the dynamical system (or vector field) into Poincaré–Dulac normal form.

1. Introduction

A well known and interesting procedure, going back to the classical work of Poincaré, for
investigating analytic vector fields (VF)Xf

Xf ≡
n∑
i=1

fi(u)
∂

∂ui
≡ f · ∇ (u ∈ Rn) (1)

or the associated dynamical systems (DS)

du

dt
= f (u) u = u(t) (2)

in a neighbourhood of a stationary point, is that of introducing some new coordinates in
which the given VF takes its ‘simplest’ form, i.e. the normal form (NF) (in the sense of
Poincaŕe–Dulac [1–4]). These coordinate transformations are usually performed by means
of recursive techniques: in general, the normalizing transformations (NT) are actually purely
formal transformations, and only very special conditions can ensure their convergence and
the (local) analyticity of the NF [1–4]. In the investigation of these problems, a relevant
role can be played by the presence of some symmetry property [5, 6] (see also [7]) of the
VF Xf , i.e. by the presence of some VFXg

Xg ≡
n∑
i=1

gi(u)
∂

∂ui
≡ g · ∇ (3)

such that

[Xf ,Xg] = 0. (4)

In terms of the DS (2), the symmetry VFXg provides the Lie generator of a (possibly
nonlinear) Lie point symmetry of the DS, and this can be conveniently expressed in the
form of the Lie–Poisson bracket

{f, g}i ≡ (f · ∇)gi − (g · ∇)fi = 0 (i = 1, . . . , n) (5)
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In this context, Bruno and Walcher [8] showed that the existence of an analytic symmetry
for a two-dimensional DS is enough to ensure convergence of the NT; in [9] the convergence
was also obtained for DS of dimensionn > 2, combining the existence of symmetries with
other conditions involving also the constants of motion of the DS; in [10, 11] the role of
symmetries was investigated in view of the problem of linearizing the DS. In this paper,
we will discuss some generalizations and results along the same lines.

2. Preliminary results

We will freely usef to both denote the VFXf (1) and refer to (the rhs of) the DS (2); let
us introduce the notation

f (u) = Au+ F(u) (6)

wheref is assumed to be analytic in a neighbourhood of the stationary pointu0 = 0, and
its linear partA = (∇f )(0) a semisimple (and not zero) matrix. The NF off will be
written

f̂ (u) = Au+ F̂ (u) (7)

(the notation̂· will be always reserved to NF; there is no danger of confusion ifu is used
to also denote the ‘new’ coordinates), andF̂ (u) contains the ‘resonant terms’ with respect
to A, i.e. the terms such that

F̂ (u) ∈ Ker(A) (8)

whereA is the ‘homological operator’ defined by

A(h) = {Au, h}. (9)

This fact can be conveniently stated in the following form.

Proposition 1.Every NF f̂ admits the linear symmetrygA ≡ Au.

Let us recall some well known and useful facts.

Lemma 1.Every symmetry

g(u) = Bu+G(u) (10)

of a NF f̂ is also a symmetry of the linear partAu of f̂ . The analogous result is true
for the constants of motion of the DS (6): i.e. if a scalar functionµ = µ(u) is such that
f̂ · ∇µ = 0 then alsoAu · ∇µ = 0.

Denoting byGf andIf the set of the symmetries and respectively of the constants of
motion of f , we can then write

Gf̂ ⊆ GAu and If̂ ⊆ IAu. (11)

This is true not only for analytic quantities, but also for quantities expressed by means of
formal power series.

Lemma 2.Given the matrixA, the most general NF has the form

F̂ (u) =
∑
j

µj (u)Mju with µj(u) ∈ IAu and [Mj,A] = 0 (12)

where the sum is extended to a set of linearly independent matricesMj (the set of these
matrices clearly includesA), and the constants of motionµj(u) appearing in (12) are
expressed by (formal) power series and also possibly by quotients, i.e. by rational functions
(see [12] for a detailed statement).
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Lemma 3.If f admits a linear symmetrygB = Bu, then the NFf̂ also admits this symmetry.
If f admits a (possibly formal) symmetryg = Bu +G(u) andB is semisimple, thenBu
is a symmetry of the NFf̂ , or—in other words—̂F is a NF also with respect toB, i.e.
F̂ ∈ Ker(A) ∩ Ker(B).

The proofs of these lemmas are well known and can be found, for example, in [7, 12–
14]. Let us also recall the basic conditions, in the form given by Bruno [1, 2], and called
condition ω and condition A, which ensure the convergence of the NT of a given DS.
Denoting byλ1, . . . , λn the eigenvalues of the matrixA, the first condition is (see [1–3] for
details) as follows.

Conditionω. Let ωk = min |(q, λ)−λj | for all j = 1, . . . , n and alln-uple of nonnegative
integersqi such that 1<

∑n
i=1 qi < 2k and(q, λ) =∑i qiλi 6= λj : then

∞∑
k=1

2−k ln(ω−1
k ) <∞.

This is a very weak condition, devised to control the appearance of small divisors in
the series of NT, and generalizes the Siegel-type condition:

|(q, λ)− λj | > ε

( n∑
i=1

|qi |
)−ν

for someε, ν > 0, or the much simpler condition|(q, λ) − λj | > ε > 0, for all n-uple
qi such that(q, λ) 6= λj (see [1–3]). Hereafter we explicitly assume that this condition is
always satisfied.

The other one, instead, is quite a strong restriction on the form of the NF. To state
this condition in its simplest form, let us assume for a moment that there is a straight line
through the origin in the complex plane which contains all the eigenvaluesλi of A, and
that there are eigenvalues lying on both parts of this line with respect to the origin. Then
the condition reads as follows.

Condition A. There is a coordinate transformation changingf to f̂ , wheref̂ has the form

f̂ = Au+ α(u)Au
andα(u) is some scalar-valued power series (withα(0) = 0).

In the case where no line in the complex plane satisfies the above property, then
condition A should be modified [1] (or even weakened: for instance, if there is a straight line
through the origin such that all theλi lie on the same side of this line, then the eigenvalues
belong to a Poincaré domain [1, 3] and the convergence is guaranteed without any other
condition); but in all the below applications, where in particular only linear NF will be
ultimately concerned, the above formulation of condition A is enough to cover all the cases
to be considered, and we can say [1, 2] that there is a convergent NT if the above conditions
are satisfied. Clearly, here and in the following, ‘convergence’ means ‘convergence in some
open neighbourhood ofu0 = 0’.

3. Symmetries and convergence of the NT: A general result

Let us finally state the first result of this paper. It can be noted that quite strong assumptions
are needed; but it is known, on the other hand, that the convergence of the NT is quite
‘exceptional’. The examples given below will show how, thanks to additional symmetry
properties, these assumptions can be verified. Let us remark that obviously, for any constant
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c, then cf is a (trivial) symmetry off ; therefore, it is understood that when we assume
the existence of some symmetry off we will always refer tonontrivial symmetry, i.e. to
symmetriesg 6= cf .

Theorem 1.Given the analytic VFf , let us write its NF, according to lemma 2, in the form

f̂ = Au+ α(u)Au+
∑′

µj(u)Mju ≡ Au+ α(u)Au+ F̂1(u) (13)

where (hereafter)
∑′ is the sum extended to the matricesMj 6= A. AssumeF̂1(u) 6= 0

(otherwise condition A is sufficient to ensure convergence of the NT), and:
(a) assume thatf admits an analytic symmetry

g = Bu+G(u) such thatB = aA (14)

wherea is a (possibly vanishing) constant;
(b) assume that the equation

{F̂1, S} = 0 (15)

for the unknown

S = S(u) =
∑′

νj (u)Mju with νj (u) ∈ IAu and νj (0) = 0 (15′)

has only the trivial solution

S = cF̂1(u) (c = constant).

Thenf can be put into NF by means of a convergent NT.

Proof. First, if a = 0 in assumption (a), one can consider, instead ofg, the symmetry
g′ = f + g having linear partAu; it is then not restrictive to assumea = 1, i.e.B = A.
Oncef is put into NFf̂ , the symmetryg will become a (possibly formal) symmetrỹg

g̃ = Au+ β(u)Au+
∑′

νj (u)Mju with β(u), νj (u) ∈ IAu (16)

this is indeed the most general symmetry of a NF, thanks to lemma 1. The symmetry
condition{f, g} = 0 in the new coordinates reads{f̂ , g̃} = 0. Evaluating this bracket term
by term, one is left with{
αAu,

∑′

j

νjMju

}
+
{∑′

j

µjMju, βAu

}
+
{∑′

j

µjMju,
∑′

k

νkMku

}
= 0

or(∑′

j

µj (u)Mju · ∇β −
∑′

j

νj (u)Mju · ∇α
)
Au+

{∑′

j

µj (u)Mju,
∑′

k

νk(u)Mku

}
= 0.

(17)

All other terms in fact vanish thanks to proposition 1 and lemmas 2 and 3. Now, in
equation (17), the bracket{·, ·} produces, through the matrix commutators [Mj,Mk], only
terms proportional toMju (and not toAu: this can easily be seen in a basis in whichA
is diagonal), therefore the terms appearing into the() and the bracket{·, ·} are both zero.
The last bracket just has the form{F̂1, S}, and therefore assumption (b) givesS = cF̂1, i.e.
νj (u) = cµj (u). From the vanishing of the first() in (17), and using again assumption (b),
one obtains similarlyβ(u) = cα(u), and then either̃g = cf̂ , which is impossible because
g 6= cf , or

g̃(u) = Au. (18)



Convergent normal forms of symmetric dynamical systems 6025

This means that the transformation which putsf (u) into f̂ (u) transformsg(u) = Au+G(u)
into g̃(u) = Au, therefore the symmetryg(u) satisfies condition A and there is convergent
transformation which putsg(u) into NF. Under this convergent transformationf (u) is
transformed into NFf̂ , as a consequence of the last part of lemma 3. �
Remark 1.One can see that assumption (b) of theorem 1 is equivalent to the assumption
that the NFf̂ admits only linear symmetriesLu. For a practical point of view (see the
examples below), it is much simpler to verify property (b).

Remark 2.In the particular case wherêF1(u) has the form

F̂1(u) = µ(u)Mu (19)

(with M 6= A), assumption (b) is actually equivalent to the very simple following one:
there are no common (analytic, formal or fractional) constants of motion of the two linear
problems

u̇ = Au and u̇ = Mu. (20)

Indeed, assume there is someκ = κ(u) ∈ IAu ∩ IMu, then S = κ(u)Au 6= cF̂1 would
satisfy{F̂1, S} = 0; notice, incidentally, that one would also get in this caseκ(u) ∈ If̂ . The
converse is easily obtained by explicit calculations. This case has already been considered
in [9]; the result for two-dimensional DS in [8] can be viewed as a particular case of this
(see [9] for details).

The apparent difficulty in the application to concrete cases of the above results is that, in
general, one does not known—a priori—the NF, and then it seems to be impossible to check
if the assumptions of theorem 1 (or even condition A) are verified by the NF. However, as
the foregoing examples will show, other symmetry properties of the VF may provide, once
again, decisive help on this point. As already remarked, the convergence of the NT is to be
considered a ‘rare’ event, and—as an obvious consequence—the examples are necessarily
‘nongeneric’. On the other hand, the presence of linear or nonlinear symmetries of the
equations has usually not only deep implications from the mathematical point of view (see
[5–7]), but also a strong relevance for the interpretation in terms of the symmetry properties
exhibited by the concrete physical problem. In particular, in the examples mentioned below,
a relevant role is played by the rotation symmetry, namely a symmetry shared is a large
class of physical problems (for instance, many problems and dynamical systems arising in
fluid dynamics, see e.g. [14], and in several other fields, see e.g. [15]).

Example 1.Consider a three-dimensional analytic DS

u̇ = f (u) = Au+ F(u) with A = diag(1, 1,−2) (21)

andu ≡ (x, y, z) ∈ R3. Note first that conditionω is trivially satisfied, being|(q, λ)| either
equal to one of the eigenvaluesλj = 1,−2 or |(q, λ) − λj | > 1, andωk = 1 for all k.
Assume thatf (u) possesses the linear SO2 symmetry generated byLu · ∇, where

L =
( 0 1 0
−1 0 0
0 0 0

)
(22)

i.e. f is ‘equivariant’ under rotations in the plane(x, y). Puttingr2 = x2+ y2, this implies
thatF(u) must be written in the form

F(u) = ϕ0(r
2, z)Au+ ϕ1(r

2, z)Iu+ ϕ2(r
2, z)Lu (23)

whereI is the identity matrix inR3. If the functionsϕ0, ϕ1, ϕ2 have the following form

ϕ0 = 0 ϕ1 = a1r
2z + a2z

3+ higher-order terms ϕ2 = bϕ1 (24)
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wherea1, a2, b are constants6= 0, then the DS also admits the nonlinear symmetry

G(u) = r2z(I + bL)u. (25)

Note that the assumptiona2 6= 0 ensures that this DS isnot a NF, and that the above
symmetry is not trivial. Then assumption (a) of theorem 1 is satisfied. Now, the NF of the
above DS (21)–(24) must be of the form

f̂ = Au+ α(r2z)Au+ µ1(r
2z)Iu+ µ2(r

2z)Lu (26)

whereα,µ1, µ2 depend only onκ = r2z, as a consequence of lemma 3 (i.e. the equivariance
under SO2 is preserved), and of Lemma 2 (the resonance condition). We have to look for
the solutionsS of the equation{F̂1, S} = 0, where the unknownS can be written

S = ν1(u)Iu+ ν2(u)Lu with ν1(u), ν2(u) ∈ IAu (27)

(it is easy to see that no other matrices can appear on the rhs of (26) and (27)), and where
ν1, ν2 must be functions only of the two functionally independent quantitiesx2z, xyz ∈ IAu.
The condition{F̂1, S} = 0 gives the first-order system of linear partial differential equations

(µ1u+ µ2Lu) · ∇ν1 = ν1u · ∇µ1

(µ1u+ µ2Lu) · ∇ν2 = ν1u · ∇µ2.
(28)

Observing thatLu · ∇µ1 = 0 andAu · ∇µ1 = 0 = u · ∇µ1 − 3z∂zµ1 and the same for
ν1, i.e. u · ∇ν1 = 3z∂zν1, one gets from the first of (28) the characteristic equation for the
unknownζ = ζ(u) defined byν1(u) = ζ(u)µ1(u)

dx

y
= − dy

x
= µ2

µ1

dz

3z
(29)

which shows thatζ must be a function ofr2 and of some other variable of the form
v = arctg(y/x)+Z(z). On the other hand,µ1 is a function ofκ = r2z, andν1 is a function
of the quantitiesx2z, xyz ∈ IAu (possibly also ofx/y, of course, the only requirement is
that µ1, ν1 are power series inx, y, z); it is then easy to see thatζ = constant, i.e. that
ν1 = cµ1. Proceeding in the same way for the other equation in (28), one can conclude that

S = cF̂1

and then also assumption (b) in theorem 1 is satisfied, and therefore there is a convergent
NT.

Note that it was essential in the calculations for the above example thatµ1 and µ2

are both6= 0, and this is in fact guaranteed by the normalizing procedure: indeed, at the
lowest order, the resonant termsr2zIu and r2zLu are orthogonal toz3Iu and z3Lu (with
respect to standard scalar product [3, 13, 14] introduced in the vector space of homogeneous
polynomials, where the homological operatorA is defined), then at the first step of the
normalization procedure the resonant terms are not changed, i.e. one hasµ1 = a1r

2z + . . .
andµ2 = a1b r

2z + . . .; and then—at any further step of the iteration—the lower-order
terms are not altered.

4. Symmetries and convergence of the NT: A special case

Let us now return to the special case whereF̂1(u) can be written in the form

F̂1(u) = µ(u)Mu. (30)

In remark 2 we saw that assumption (b) of theorem 1 can be replaced by the requirement
that there are no simultaneous constants of motion ofAu andMu. Assume now that, as
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in example 1, the DS admits not only the nonlinear symmetryg(u) (assumption (a) of
theorem 1), but also a symmetry generated by some linear VFLu ·∇, and thatg(u) satisfies

{g,Lu} = 0. (31)

In the NT the symmetry is conserved step by step [14], thereforeg(u) also will be
transformed, oncef is in NF f̂ , into someg̃(u) which is symmetric underLu: {g̃, Lu} = 0.
From this remark we see that it is sufficient to look for the common constants of motion
of Au andMu only in the setof those scalar functionsκ = κ(u) which are left invariant
by Lu; in other words, we can conclude that if the set of these simultaneously invariant
functions is trivial, i.e. it contains only constant numbers:

IAu ∩ IMu ∩ ILu = R (32)

then no other nonlinear symmetries are allowed, andg̃(u) becomes necessarilỹg(u) = Au;
then, using similar arguments as above, the convergence of the NT is guaranteed. In
conclusion, we can state the following.

Theorem 2.Assume thatf admits a symmetryg as in assumption (a) of theorem 1, and
also a symmetry generated by a linear VFLu · ∇ such that in addition (31) and (32) are
satisfied. Then, ifF̂1 has the form (30), the NT is convergent. The result can be trivially
extended to the case thatf admits an algebra of (more than one) symmetriesLku · ∇.

Example 2.The same as example 1, here withb = 0 and a1, a2 6= 0. In the NF now
µ1 = a1r

2z + . . . 6= 0, but µ2 may be zero. Ifµ2 6= 0, theorem 1 can be applied. If
µ2 = 0, then F̂1 has the form (30); on the other hand, it is clear that no SO2-invariant
analytic functions are simultaneously constants of motion ofu̇ = Au and u̇ = u, then all
assumptions of theorem 2 are satisfied, and the NT is convergent.

The example given in [9] can be viewed as another example of theorem 2, in the
presence of a larger symmetry (the Lie algebra of the group SO3).

To conclude, it is interesting to point out the following peculiar property of the present
approach.

Remark 3.All the results in this paper are peculiar ofnon-Hamiltonian DS: indeed, a
Hamiltonian DS never satisfies the crucial hypothesis, i.e. assumption (b) of theorem 1. Let
in factH = H(u), with u ≡ (q, p) ∈ R2m, be an analytic Hamiltonian and

u̇ = J∇H
be the associated DS, whereJ is the symplectic matrix. WritingH = H0 + HR, where
H0 is the quadratic part ofH , we have clearlyAu = J∇H0 andF(u) = J∇HR, and the
requirement thatF(u) is in NF, F̂ (u) = J∇ĤR, now becomes the requirement thatH0

is a constant of motion ofĤR (cf [16, 17]). Then, equation (15) always admits nontrivial
solutions of the form

S = η(H0)F̂1

for any (regular) functionη of H0.
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